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Purpose of review

The purpose of this study is to review current perspectives regarding the pathogenesis of cardiorenal
syndrome (CRS) in chronic kidney disease (CKD), and current treatment guidelines for this condition.

Recent findings

The pathophysiological mechanisms underlying the development of CRS in CKD include neurohumoral,
haemodynamic and CKD-related mechanisms. Recent evidence suggests that sympathetic nerve activity
plays a role in CRS, but the SYMPLICITY HTN-3 trial failed to show a reduction of blood pressure after
catheter-based renal denervation in patients with resistant hypertension. Kidney injury in patients with heart
failure was previously considered to result from arterial underfilling due to low cardiac output, but the role
of renal venous hypertension in this process has also recently been investigated. It would be useful to
develop a reliable treatment option for CRS due to haemodynamic mechanism other than volume control
using diuretics. Fibroblast growth factor 23 (FGF23) is a phosphaturic hormone that has recently been
identified as a CKD-related factor affecting CRS. FGF23 treatment has both advantages and disadvantages
in terms of CRS progression.

Summary

Multiple disorders underlie the development of CRS. Current treatment options include renin–angiotensin
system blockade and volume control, but remain limited. A multidisciplinary approach is required to prevent
CRS, including renal sympathetic denervation, treatment of renal venous hypertension and FGF23 treatment.
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INTRODUCTION

Chronic kidney disease (CKD) is an independent risk
factor for cardiovascular disease (CVD), and there is
a high prevalence of CVD among patients with CKD.
Mortality due to CVD is 10–30 times higher in
dialysis patients than in the general population
[1], and patients with CVD often have CKD. This
interaction between CKD and CVD is known as
cardiorenal syndrome (CRS).

Ronco et al. [2,3
&&

] proposed division of CRS into
five categories according to the associated etiologic
and chronologic factors. Each category is character-
ized as follows: CRS type 1 – acute worsening of
cardiac function [e.g. acutely decompensated con-
gestive heart failure (CHF)] leading to acute kidney
injury or dysfunction; CRS type 2 – chronic abnor-
malities in cardiac function (e.g. chronic CHF)
causing progressive and permanent CKD; CRS
type 3 – acute worsening of kidney function leading
to acute cardiac injury or dysfunction, such as acute
myocardial infarction, CHF or arrhythmia; CRS
type 4 – primary CKD contributing to decreased
© 2015 Wolters Kluwer 
cardiac function, cardiac hypertrophy, fibrosis or
increased risk of adverse cardiovascular events; and
CRS type 5 – acute cardiac and renal injury and
dysfunction in the setting of an overwhelming
systemic insult.

This classification describes the clinical setting
associated with CRS, but is not based on pathophy-
siological mechanisms. CVD is common in patients
with CKD and is associated with substantially
increased risk of end-stage renal disease (ESRD)
and all-cause mortality before the development of
Health, Inc. All rights reserved.

Volume 24 � Number 2 � March 2015

mailto:tsuruya@intmed2.med.kyushu-u.ac.jp


KEY POINTS

� The complicated pathophysiological mechanisms
underlying the development of CRS in CKD include
neurohumoral and haemodynamic disorders as well as
CKD-related factors such as anaemia, calcium-
phosphate imbalance and inflammation.

� The effects of renal venous hypertension on CRS have
recently been investigated; increased tubulointerstitial
pressure and decreased arterio-venous gradient can
result in the reduction of glomerular filtration pressure
and renal blood flow, but the precise mechanisms
underlying the worsening of renal function secondary to
renal venous hypertension remain unclear.

� Although the results of experimental studies suggest that
renal sympathetic nerves play an important role in the
pathophysiological mechanisms leading to CRS, it is
currently unclear whether catheter-based renal
denervation is useful for the treatment of CRS.

� FGF23, a newly identified phosphaturic hormone, may
have both advantages and disadvantages, with a
protective effect on arterial calcification in nondialyzed
CKD patients and promotion of left ventricular
hypertrophy in anuric patients; and alteration of FGF23
concentrations may lead to new strategies for the
treatment of CRS.

Cardiorenal syndrome in chronic kidney disease Tsuruya and Eriguchi
ESRD [4
&

]. These findings suggest that cardiac and
renal injuries affect each other, and that CRS types 2
and 4 according to the Ronco classification are
overlapping and coexistent.
 Copyright © 2015 Wolters Kluwe
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In addition to haemodynamic changes, neuro-
humoral factors such as renin–angiotensin system
(RAS) activation, sympathetic nerve activity (SNA)
activation and nitric oxide level play important
roles in the interactions between the heart and
kidneys in patients with CKD and CVD [5

&

,6]. In
this review, we describe the interactions among
these factors and their impact on the mechanisms
underlying the development of CRS, and thera-
peutic strategies for the management of CRS.

CVD and CKD coexist in patients with CRS, and
conventional risk factors for CVD and CKD, such as
hypertension and diabetes mellitus, influence the
development of CRS [7]. An understanding of the
factors that cause CRS in patients with both CKD
and CVD is important for determining optimal
therapeutic strategies for these patients.

This study discusses the interactions among
three maladaptive cycles that lead to the develop-
ment of CRS: neurohumoral disorders, haemody-
namic alterations and CKD-related factors
(Fig. 1).
NEUROHUMORAL DISORDERS

Neurohumoral factors are essential haemodynamic
regulators and strongly affect blood pressure and
body fluid volume. Each of these factors interacts
complicatedly with each other, and also has a direct
effect on organ injury in a haemodynamic-inde-
pendent manner.
r Health, Inc. All rights reserved.
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Pathophysiology of hypertension
Interactions among renin–angiotensin
system, sympathetic nerve activity and nitric
oxide

RAS, SNA and nitric oxide interact with each other
and have important roles in the neurohumoral mal-
adaptive cycle leading to the development of CRS
[6,8,9]. In an animal model, continuous intravenous
injection of angiotensin II [10] or intracerebroven-
tricular injection of angiotensin II [11] caused SNA
activation, and increased secretion of renin from the
juxtaglomerular apparatus after SNA-induced acti-
vation of b1 receptors caused RAS activation, result-
ing in a positive-feedback cycle. The RAS interacts
with nitric oxide [12] and lowers the nitric oxide
level in the renal cortex of rats injected with angio-
tensin II [13].

Conversely, inhibition of nitric oxide by chronic
administration of Nv-nitro-L-arginine methyl ester
increases RAS activation by reducing the renal cir-
culation [14,15

&&

], although this inhibition of nitric
oxide initially lowers RAS activation [16] because of
volume overload [8]. Moreover, inhibition of nitric
oxide promotes a reduction in the glomerular filtra-
tion rate (GFR) by increasing the renal response to
angiotensin II [17].

Inhibition of nitric oxide in rats also results in
SNA activation by resetting the baroreceptors over
time, although there is an initial transient decrease
in SNA activation due to the baroreceptor reflex
response to increased blood pressure [18]. Blocking
of the afferent baroreceptor pathways results in SNA
activation immediately after inhibition of nitric
oxide [18]. Several studies reported that decreased
nitric oxide production in the central nervous sys-
tem resulted in SNA activation [11,19].

Conversely, activation of SNA inhibits nitric
oxide production. Decreased activity of the L-argi-
nine–nitric oxide metabolic pathway is reported in
patients with CHF in whom SNA activation is
thought to occur [20]. Couto et al. [21] found reduced
nitric oxide bioavailability in the small vessels of
mice that had sympathetic hyperactivity because
they lacked a2A/a2C-adrenergic receptors.
Nitric oxide

Accumulation of asymmetric dimethylarginine
results in chronic inhibition of nitric oxide [22

&

].
RAS and SNA activation result in accelerated pro-
gression of CKD, and decreased nitric oxide pro-
duction due to accumulation of asymmetric
dimethylarginine results in further RAS and SNA
activation and development of CRS [22

&

]. Bongartz
et al. [23,24] reported on the impact of nitric oxide
inhibition on CRS progression using two models of
CRS. These models of CRS induced by subtotal
 Copyright © 2015 Wolters Kluwer 
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nephrectomy as well as coronary ligation, or by
transient nitric oxide reduction, can be applied to
clinical situations [25], and show that nitric oxide
inhibition plays an important role in the develop-
ment of CRS. Although these findings suggest that
retrieval of nitric oxide should be an important
therapeutic strategy in CRS, this strategy has not
been shown to be clinically effective.
Renin–angiotensin system

RAS activation results in organ damage in patients
with CKD and CVD, and RAS inhibitors are used as
first-line treatment in hypertensive patients with
CRS [5

&

]. Albuminuria is an independent risk factor
for the progression of CKD and CVD even when
renal function is normal [26], and randomized
controlled trials of RAS inhibitors found that
greater reduction in urinary protein excretion
was associated with stronger protective effects
against CRS [27,28]. It has also been reported that
reduction in proteinuria in the early stage of CKD
lowers the risk of progression of CKD [29

&

]. Treat-
ment with a RAS inhibitor is therefore required
from the early stage of CKD to prevent the pro-
gression of CKD and CVD, using the degree of
albuminuria as a therapeutic target.
Sympathetic nervous system

SNA activation is observed from the early stage of
CKD [30] and during progression to ESRD [31], and
is associated with CVD and mortality in these
patients [30]. SNA activation was reported in various
experimental models of renal injury [15

&&

,32,33]. Ye
et al. [33] reported SNA activation after a limited
renal injury induced by intrarenal injection
of phenol.

The mechanisms underlying SNA activation in
CKD include increased circulating RAS [10] and
brain RAS [11], nitric oxide depletion [18], stimu-
lation of renal baroreceptors, chemoreceptors and
sensory receptors [32], reduction in renal mass [33],
renal ischemia [34] and other factors [35].

A recent study reported that renal denervation
resulted in reduction of albuminuria without affect-
ing the blood pressure in a rat model of CRS induced
by hemi-nephrectomy and aortic regurgitation [36].
We then investigated the effects of renal denerva-
tion on the interaction between SNA and RAS in a rat
model of CRS induced by chronic nitric oxide inhi-
bition, and found that renal denervation had pro-
tective effects against cardiac and renal dysfunction
[15

&&

]. These effects were associated with decreased
RAS activation and were independent of the blood
pressure lowering effects (Fig. 2).
Health, Inc. All rights reserved.
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FIGURE 2. Renal denervation in an experimental study. Chronic administration of Nv-nitro-L-arginine methyl ester (L-NAME; a
nitric oxide synthase inhibitor) was used to induce proteinuria and cardiac hypertrophy, similar to cardiorenal syndrome, in
Wistar rats. These changes were suppressed by bilateral renal sympathetic denervation (Bil. DNx), but not by hydralazine
(Hyd) treatment, even though blood pressure and nitric oxide depletion were maintained at the same levels in both groups.
SBP (a), urinary nitric oxygen (NOx) (b), urinary protein excretion (c) and heart weight (d) are shown. Values are
mean� standard error of the mean. �P<0.05 vs. control rats, ��P<0.05 vs. Bil. DNx rats, ���P<0.05 vs. L-NAME rats,
yP<0.05 vs. baseline values. This figure is a direct copy of [14].
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Renal denervation using catheter devices has
been reported to be clinically effective for the pre-
vention of hypertension [37], atherosclerosis [38],
left ventricular hypertrophy (LVH) [39], albuminu-
ria [40] and CKD [41], but these studies were not
comparative trials. The blinded randomized con-
trolled SYMPLICITY HTN-3 trial [42

&&

], which used
a sham-operation group for comparison, did not
show a significant difference in the reduction of
SBP in patients with resistant hypertension
(Fig. 3). As many physicians expect renal denerva-
tion to be an attractive therapeutic modality in
patients with CRS, it should be determined why this
was not shown to be effective in the SYMPLICITY
HTN-3 trial [43]. First, it is possible that ablation
using the catheter device was incomplete. We found
that one-sided denervation did not prevent increase
in blood pressure or progression of organ damage
[15

&&

]. Second, it is possible that the patient selec-
tion process was not appropriate. In a preliminary
experiment using a puromycin aminonucleoside-
induced model of nephrotic syndrome, we did not
 Copyright © 2015 Wolters Kluwe
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find that renal denervation reduced proteinuria or
hypertension. It is important to identify clinical
markers that can be used to confirm adequate dener-
vation and to ensure appropriate selection of can-
didates for denervation.
HAEMODYNAMIC ALTERATIONS

Haemodynamic alteration in CRS, which has been
explained as the low-flow theory, is an indispensa-
ble factor in talking about cardio-renal interaction.
We address the recent proposed theory concerning
how ‘renal venous hypertension’ affects the renal
perfusion in this section.
Abnormal pressure natriuresis for low
cardiac output (low-flow theory)

Regulation of sodium balance according to the pres-
sure natriuresis curve and heart and kidney function
is important for the maintenance of appropriate
blood pressure and body fluid volume [44].
r Health, Inc. All rights reserved.
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Increased blood pressure resulting from a normal
cardiac response to increased fluid volume, and
pressure natriuresis in response to the increased
blood pressure, are required for excretion of excess
sodium and body fluid. In patients with CKD who
have insufficient sodium excretion because of
er 

15

P (mm

e. T
ex. C
reduced GFR due to reduced numbers of functional
nephrons, there is insufficient pressure natriuresis.
Pressure natriuresis is also affected by neurohumoral
factors, with a shift of the pressure natriuresis curve
to the right after RAS and SNA activation [44].
Renal venous hypertension

It was previously thought that impaired pressure
natriuresis was caused mainly by reduced renal
blood flow due to low cardiac output and by arterial
underfilling due to left ventricular contractile dys-
function. However, a study of 1 184 655 patients
with heart failure in the ADHERE database did not
find an association between left ventricular contrac-
tile dysfunction and renal dysfunction, suggesting
that renal dysfunction was not attributable only to
low cardiac output [45]. This finding suggests that
renal venous hypertension due to venous conges-
tion, rather than arterial underfilling, may cause
renal dysfunction.

The results of recent clinical trials also suggest
that renal dysfunction may be caused by renal
venous hypertension due to venous congestion
rather than by arterial underfilling [46,47]. A sub-
analysis of the ESCAPE trial showed the relationship
between increase in central venous pressure and
decrease in estimated GFR after adjusting cardiac
index (Fig. 4) [46]. GFR is considered to decrease in
response to reduction in the net filtration pressure
caused by increased hydrostatic pressure in Bow-
man’s capsule secondary to increased interstitial
pressure (Fig. 5) [48,49]. Other suggested causes of
renal dysfunction are neurohumoral factors, myo-
genic responses, regulation of renal blood flow and
Health, Inc. All rights reserved.
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FIGURE 5. Haemodynamic impact of renal venous
hypertension on glomerular capillary. Renal venous
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pressure (PBC elevation), resulting in reduced glomerular flow
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This figure is original.
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GFR by tubuloglomerular feedback [8], and hypoxia
and inflammation of the renal parenchyma. These
factors suggest that abnormal pressure natriuresis
due to decreased GFR, exacerbation of venous con-
gestion and worsening of heart failure due to low
cardiac output create a positive-feedback cycle
(Fig. 1).
CHRONIC KIDNEY DISEASE RELATED
RISK FACTORS

In the past decade, two novel pathogenic mechan-
isms have been proposed for the development of
CVD in patients with CKD: the cardiorenal anae-
mia (CRA) syndrome proposed by Silverberg et al.
[50] and the malnutrition–inflammation–athero-
sclerosis (MIA) syndrome proposed by Stenvinkel
et al. [51]. In addition, it was also recently reported
that disturbances in mineral and bone metabolism
are involved in the pathogenesis of CVD in patients
with CKD. This mechanism has been termed CKD-
related mineral and bone disorder (CKD-MBD), and
includes abnormalities in bone and mineral metab-
olism and vascular calcification [52]. CRA syn-
drome, MIA syndrome and CKD-MBD are
considered to interact with each other in the patho-
genesis of CRS (Fig. 6).
 Copyright © 2015 Wolters Kluwe
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Inflammation

Inflammation in CKD is induced by increased levels
of inflammatory cytokines due to increased pro-
duction of uremic toxins [53] and reduced clearance
due to renal dysfunction [54]. Inflammation is a
predictor of cardiovascular and total mortality in
CKD [55], and is also a predictor of mortality and
disease severity in patients with heart failure [56].

Venous congestion and volume overload have
increasingly recognized roles in the development of
inflammation in patients with CRS [57]. Oedematous
bowels, veins and peripheral tissues can be important
sources of inflammatory mediators when exposed to
high intravascular and interstitial pressures.

We recently reported that inflammation and
malnutrition play important roles in the develop-
ment of vascular calcification in rats with adenine-
induced chronic renal failure [58

&&

], and that vascular
calcification in these rats was ameliorated by anti-
oxidant treatment [59].

Inflammation is considered to be one of the
important factors regulating CRS. However, recently
conducted randomized controlled trials of immune-
selective anti-inflammatory derivatives such as eta-
nercept [60] and infliximab [61] did not show any
effects on the risk of death from any cause or hos-
pitalization for heart failure. The ACCLAIM trial
investigated the effects of nonspecific immunomo-
dulation in patients with heart failure and showed
no significant effects in the group overall, but was
associated with reduced risk of death from any cause
and first hospitalization for CVD in patients with no
history of myocardial infarction and patients with
New York Heart Association (NYHA) class II heart
failure [62].
Anaemia

Patients with heart failure may have anaemia even
though they have a high plasma erythropoietin
(EPO) concentration. This EPO-resistant anaemia
is considered to be caused by inflammation [63].
In patients with CRS, anaemia is attributed to both
EPO deficiency and inflammation-induced EPO
resistance. Appropriate management of anaemia is
important, because it influences mortality and renal
survival in patients with CRS.
Calcium-phosphate imbalance

CRS has been reported to be associated with CKD-
MBD. Activation of vitamin D exerts various
effects such as reduction of RAS activation,
reduction of inflammation, reduction of apopto-
sis, inhibition of cell proliferation and immune
modulation, in addition to regulation of bone and
r Health, Inc. All rights reserved.
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FIGURE 6. Schematic diagram of interactions among chronic kidney disease related factors. Malnutrition–inflammation–
atherosclerosis (MIA) syndrome, cardiorenal–anemia (CRA) syndrome and CKD-related related mineral and bone disorder
(CKD-MBD) interact with each other. Inflammation plays a central role in all three mechanisms. Ca, calcium; P, phosphorus.
This figure is original.
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mineral metabolism. Two studies reported that the
anti-inflammatory effects of activated vitamin D
provided cardiorenal protection. One study found
improvements in proteinuria and renal dysfunc-
tion in a murine model of adriamycin-induced
nephropathy [64], and another found improve-
ment in LVH in rats with CKD induced by subtotal
nephrectomy [65

&

]. Two recent randomized con-
trolled trials investigated the cardiorenal protec-
tion provided by paricalcitol therapy. Paricalcitol
therapy reduced albuminuria in the VITAL study
[66], but did not improve LVH in patients with
CKD in the PRIMO trial [67]. Further accumulation
of evidence of beneficial effects of vitamin D recep-
tor activator (VDRA) on CRS is required in the
clinical setting.

Recent studies found that an increase in the
serum FGF23 level, which causes reduction of the
serum phosphate level by inhibition of proximal
tubular phosphate reabsorption through its own sup-
pressive effect on the expression of type 2a and 2c
sodium-phosphate cotransporter in the brush border
membrane of proximal tubules, and by inhibition of
intestinal phosphate absorption secondary to
reduction of the 1,25-dihydroxyvitamin D level, is
 Copyright © 2015 Wolters Kluwer 
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associated with CVD [68
&

]. It is currently unclear
whether FGF23 is a biomarker or a pathogenic factor
in this process. Faul et al. [69] reported that intra-
myocardial or intravenous injection of FGF23 in
wild-type mice resulted in LVH. However, Shalhoub
et al. [70] reported that administration of anti-FGF23
neutralizing antibodies increased vascular calcifica-
tion and mortality in a rat model of CKD. FGF23 has a
preventive effect on arterial calcification because it
controls the serum phosphate level via its phospha-
turic action in patients with nondialyzed CKD and
induces LVH by reducing the activation of vitamin
D in patients with ESRD without phosphaturia.
FGF23 may therefore have different effects in differ-
ent patients with CRS, depending on the stage of
CKD. It is expected that further elucidation of the
pathophysiological impact of FGF23 will lead to the
development of new strategies for the treatment
of CRS.

More recently, a new phosphate-centric para-
digm for pathophysiology and therapy of CKD has
been proposed that extracellular phosphate exerts
its cytotoxicity when it forms insoluble nanopar-
ticles with calcium and fetuin-A, referred to as cal-
ciprotein particles (CPPs) [71

&&

]. These observations
Health, Inc. All rights reserved.
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have raised the possibility that CPPs may promote
progression of CKD and vascular calcification,
resulting in development and progression of CRS.
CONCLUSION

Although many pathogenic factors leading to CRS
have been identified, it is possible that an important
underlying mechanism remains unclear. Further
elucidation of the mechanisms underlying the
development of CRS may lead to clinically feasible
strategies for the treatment of this condition.
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